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INTRODUCTION

The main objective of the International Satellite Land Surface Climatology Project
(ISLSCP) has been stated as "the development of techniques that may be applied to satellite
observations of the radiation reflected and emitted from the Earth to yield quantitative
information concerning land surface climatological conditions." The major field study, FIFE
(the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective.
Four intensive field campaigns (IFCs) were carried out in 1987 and one in 1989. Factors
contributing to observed reflected radiation from the FIFE site must be understood before
the radiation observed by satellites can be used to quantify surface processes. Analysis since
our last report (Walter-Shea et al.,, 1991) has focused on slope effects on incoming and
outgoing shortwave radiation and net radiation from data collected in 1989.

MATERIALS AND METHODS

Instrumentation and Experimental Site

A Barnes Modular Multiband Radiometer (MMR) 12-1000, Radiation Energy
Balance Systems (REBS) single dome net radiometers and Eppley Precision Spectral
Pyranometers (PSPs) were used to collect incoming and reflected radiation over 15 prairie
vegetative plots and one bare soil plot at FIFE experimental Site 966 (2437-BBS) in 1989.
Plots were selected from hill tops (horizontal surfaces) and from slopes with aspects aligned
in the four cardinal directions and in close proximity to each other.

The MMR collects spectral data in eight wavebands ranging from the visible to the
thermal infrared. The MMR, set with 15° field of view, was mounted on a portable,
inclinable mast three meters above the soil surface producing a target spot size of 0.8m at
nadir. The MMR was calibrated in 1989 by Dr. Brian Markham at NASA/Goddard Space
Flight Center in Greenbelt, Maryland according to the method of Markham et al. (1988).

Bidirectional reflected radiation was measured at seven to eight view zenith angles in the



plane parallel to the slope aspect at nadir, 20°, 35° and 50° on either side of nadir and
normal to the plot (if it varied from the other viewing directions).

Nadir-viewed MMR data were collected over a horizontally-mounted, calibrated
Labsphere halon reference panel (Labsphere Inc., P.O. Box 70, North Sutton, NH 03260)
to estimate incident radiation in each MMR wave band. The panel was calibrated using the
Department of Agricultural Meteorology’s field-reference panel calibration goniometer
(Walter-Shea et al., 1992) following the field calibration method of Jackson et al. (1987).
This method corrects panel reflected radiation data for the panel’s non-Lambertian
properties. Incoming radiation values were estimated from the panel reflected radiation
data using MMR calibration coefficients provided by B. Markham to yield units of spectral
radiance (W m? sr* ym).

A portable A-frame was mounted with: (1) one upright Eppley PSP to measure
incoming shortwave radiation on a horizontal surface; (2) two inverted Eppley PSPs to
measure reflected shortwave radiation component measurements (one horizontally-mounted,
the other mounted parallel to the slope); and (3) two net radiometers to measure net
radiation (one horizontally-mounted, the other mounted parallel to the slope). The inclined
PSP and net radiometer were adjusted at each plot to the appropriate angle representing
the plot slope aspect.

A limited number of MMR and A-frame measurements were made due to terrain
roughness and equipment restrictions. Approximately two hours were required to complete
an entire run (multidirectional measurements over all plots on all slopes) so that large
changes in solar zenith angle resulted during a single run. Thus, discussion will be limited
to comparisons of radiation measured from instruments honzontdlly -mounted (nadir) or
mounted parallel (normal) to the sloped surface. Comparisons will be used to indicate

errors (or lack of error) involved when the effective illumination is not taken into account.



Experimental Procedures

MMR nadir-viewed measurements of the reference panel were taken at the beginning
of the measurement run, followed by MMR multi-angle reflected radiation measurements
over prairie vegetative and bare-soil plots. Repeated measurements from the A-frame were
made in the same plots as the MMR, immediately following bidirectional reflected radiation
measurements. Nadir-viewed reflected radiation from the reference panel were periodically
measured during the run with a final nadir-viewed reflected reading completing the sequence
of measurements.

Incoming radiation received on a horizontal surface was corrected to represent
radiation received on an inclined surface., Correction requires the effective (or local) solar

zenith angle. The effective solar zenith angle was calculated (from Igbal, 1983) as:

cosB, = cosBcosh, + sin Bsin@,cos(y-y) (1]
where:

B = slope of surface (measured from the horizontal)

Y = surface azimuth angle (ranging in value from 0 to +180

with east = +90 and west = -90)
= effective solar zenith angle
= solar azimuth
= solar zenith angle

arccos (sinésing + COS8COSpCOsw)
= hour angle
= geographic latitude
= declination angle

=
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Incoming radiation values (from the upright PSP and MMR nadir-viewed reflected
radiation from the field-reference Panel) were cosine corrected to account for incident
radiation received at the sloped surface (values multiplied by the ratio of the cosine of the
effective solar zenith angle (8.) and the cosine of the solar zenith angle (8,), i.e., cos8,/cos6,).
Nie and Kanemasu ( 1989) corrected the direct beam component. Total incoming radiation

was cosine corrected in our study.



RESULTS AND DISCUSSION

Variation in actual and effective solar zenith angles. The effective solar zenith angles

of four of the fifteen vegetative plots (one from each slope) at Site 966 observed during the
measurement period are given in Table 1. Table 1 provides an example of the variation in
effective solar zenith angles possible for sloped surfaces at the FIFE site. Inclination angles
of these four plots ranged from 12 to 18° from the horizontal. For the relatively gentle
slopes and limited times of measurement at site 966, the greatest ditference observed
between the actual solar zenith angle and the effective solar zenith angle was approximately
*18° (resulting in a correction of 1.3 and 0.62 times the measured value). Both situations
(i.e., corrections which increase and decrease the horizontal surface irradiance value to
simulate that irradiance received on an inclined surface) occurred on the east-facing slope.

Field-reference panel cosine correction test. A simple test was conducted to estimate
the error involved in using the cosine correction method to estimate irradiance on a sloped
surface. MMR reflected radiation data from a Labsphere Spectralon field-reference panel
collected using the field-panel calibration goniometer (Walter-Shea et al., 1992) was used
in the test. The goniometer permits the inclination of field-reference panels at 10°
increments, to effectively illuminate panels at 15 to 75° illumination angles in a short period
of time. The calibration requires panels be measured at various inclination as well as in a
horizontal position. Thus, the horizontal measurement simulates the reference data
measured at site 966 while the inclined panel values give an indication of values expected
at all possible illumination angles on sloped surfaces. The data were collected under three
different diffuse sky conditions. Nadir-viewed MMR data measured from a horizontally-
mounted field-reference panel were cosine corrected to represent irradiance received on a
sloped surface. These corrected values were compared to values from inclined panels

effectively illuminated at various angles. The method was tested for all seven MMR optical



wave bands (Table 2). The cosine corrected values on the average overestimated the actual
inclined measured reflected values. However, the largest relative error of 0.5% was in the
blue portion of the spectrum (wave band 1) with the lowest relative error of 0.03% in the
mid-IR region (wave band 7).

Slope Effect on Bidirectional Spectral Radiance. Nadir-viewed reflected radiation
values generally are used as an estimate of surface albedo. Generally, surfaces are assumed
to be Lambertian so that a simple cosine correction is applied to simulate the radiation
reflected in the direction normal to the sloped surface. Difference between nadir-viewed
reflected radiation and that from a view direction normal to the surface were investigated.
MMR reflected radiation collected at nadir was compared to -MMR reflected radiation
collected in a position normal to the inclined surface (Table 3). The largest difference
between nadir-viewed radiances and that measured from a view direction normal to the
surface occurred on the north-facing slopes for all seven wave bands with the reflected
radiation measured for the surface normal 1-3 W m? sr* pm” lower than the nadir-viewed
values. Mean relative errors were approximately 4-10%.

Cosine-Correction Effect on Bidirectional Reflectance Factors. Comparisons for all

seven MMR optical wave bands were made between reflectance factors calculated using
nadir-viewed panel data and reflectance factors calculated using cosine corrected-nadir-
viewed panel data (Table 4). Reflectance factors are for all view zenith angles. The
greatest mean relative errors (approximately 9%) are for those values from the north and
west-facing slopes. Although the mean bias error (MBE) and mean relative error (MRE)
are low for the east facing slopes, the graphs (Fig. 1) and r* indicéte that large differences
between the two methods of calculating reflectance factors can result. Differences are

attributed to the large difference in actual and effective solar zenith angles (Table 1).



Slope Effect on Reflected and Incoming Shortwave Radiation, Albedo and Net

Radiation. Reflected shortwave radiation measured with the two inverted Eppley PSPs over
horizontal and inclined surfaces were compared (Table 5). Reflected radiance from the two
PSPs over the horizontal surfaces varied, indicating a variation in target surface and
instrument performance as well as experimental error. Variation between measured
reflected radiation from the sloped plots as measured with the two PSPs (horizontal- and
parallel-mounted) is lower than the variation between measured reflected radiation from the
horizontal surfaces (hill tops) as measured with the two PSPs (both of which are
horizontally-mounted). Therefore, we cannot say that there is a true difference in reflected
radiation from inverted horizontally-mounted PSP and the PSP mounted parallel to the
surface. Correlation coefficient values were high regardless of surface and instrument
inclination. R? were similarly high for MMR directional radiances regardless of the surface
inclination (Table 3).

Incoming shortwave radiation (measured on a horizontal surface) was cosine
corrected to estimate the irradiance on inclined surfaces. Irradiance received on horizontal
surfaces was compared to simulated irradiance received on sloped surfaces. Values differed
the least for the south-facing slope (north, east and west facing slopes had high MBE and
MRE and/or low R’) (Table 6). As a result, albedo values calculated from reflected and
incoming shortwave radiation from horizontally- and parallel-mounted PSPs differed
considerably (Table 7 and Fig. 2). North-facing slope corrected values are consistently larger
than uncorrected values since the effective solar zenith angle was always larger than the
actual solar zenith angle during the measurement period (See Table 1). Only during large
solar zenith angles would the effective angle be larger than the actual for the north-facing
slope. East and west-facing slope data are "random" in nature since differences in effective

and actual solar zenith angles varied during the measurement period.



Reflected radiation varied little with sensor orientation (nadir or horizontally oriented
as compared to those mounted parallel to the sloped surfaces) (Tables 3 and 5). Irradiance
on horizontal and inclined surfaces varied considerably (Table 6) so that calculated values
of reflectance and albedo depended on instrument orientation (Tables 4 and 7). Likewise,
net radiation differed according to instrument mounting as was reported by Nie and
Kanemasu (1989) (Table 8).

Conclusion

Results indicate the need for careful consideration of instrument orientation in
characterizing radiation balance components and net radiation of sloped terrain even on the
gentle slopes (12 to 18° slopes) of our FIFE study site. Of particular concern is
measurement of incident radiation. Albedo and net radiation values measured over
vegetation on inclined surfaces varied considerably between values measured from

instruments mounted parallel and those mounted in a horizontal position.
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Table 1.  Solar zenith angle and effective solar zenith angle for four plots along north-, south-, east- and west-facing
slopes at Site 966 during MMR and A-frame measurements.

SOLAR EFSEAHRVE DIFFERENCE | ¢0s 4,
SLOPE| DATE | PLOT | ASPECT | AZIMUTH ZEerTH ZENT vy A
. iy
15> | 166 2 | NorRTH 87.1 54.6 55.2 - 0.60 0.985
166 2 | NORTH 199.6 165 31.0 - 14.50 0.894
166 2 | NoRTH | 2570 372 428 - 560 0921
195 2 | NorTH 91.4 52.5 543 - 1.80 0.959
195 2 | NORTH 113.9 319 40.1 - 820 0.901
221 2 | NORTH 122.4 35.7 453 - 960 0.866
221 2 | NorTH 152.9 25.6 39.5 - 13.90 0.856
e
1 | 166 7 | soutH 91.2 49.6 51.4 - 1.80 0.963
166 7 | sourtH 2269 212 15.5 5.70 1.034
166 7 | soutH 262.6 42.6 432 - 060 0.990
195 7 | souTH 93.7 49.7 50.7 - 100 0.979
21 7 | soutn 117.5 386 33.7 4.90 1.065
221 7 | soutn 1639 242 9.1 15.10 1.083
18 | 166 10 | EAST 917 423 246 17.70 1.229
166 10 | EasT 266.3 46.6 64.6 - 18.00 0.624
195 10 | EAST 95.0 482 303 17.90 1.295
221 10 | EAsT 114.6 40.5 25.1 15.40 1.191
21 10 | EasT 169.1 238 26.7 - 290 0976 |
122 | 166 14 | WEST 102.9 373 49.1 - 11.80 0823 |
166 14 | WesT 268.0 48.6 36.6 12.00 1214
195 14 | WEST 97.3 45.7 57.6 - 11.90 0.767
221 14 | WEST 112.0 42.5 53.8 - 1130 0.801
221 14 | WEST 180.5 235 2.1 - 260 0.979




Table 2. Mean relative error associated with estimating irradiance on a inclined surface using irradiance received on
the horizontal cosine corrected. Inclined surface irradiance on a field-reference panel was measured with
a MMR using the field-panel calibration goniometer.

——————
MMR Wave Band Mean Relative Error (%)

1 0.55

2 0.29

3 0.15

4 0.25

5 0.17

6 0.08

7 0.03

10
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